

Available online at www.sciencedirect.com

Tetrahedron: Asymmetry 16 (2005) 2559–2568

Tetrahedron: **Asymmetry**

Preparation of single-enantiomer semiochemicals using 2-methoxy-2-(1-naphthyl)propionic acid and 2-methoxy-2-(9-phenanthryl)propionic acid

Akio Ichikawa^{a,*} and Hiroshi Ono^b

^aNational Institute of Agrobiological Sciences, 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan ^bNational Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan

> Received 5 April 2005; accepted 19 May 2005 Available online 26 July 2005

Abstract—Enantioresolution of 3-octanol, 6-methyl-5-hepten-2-ol (sulcatol), and 1-octen-3-ol was conducted using (S)-(+)-2-methoxy-2-(1-naphthyl)propionic acid (MaNP acid) and (S)-(+)-2-methoxy-2-(9-phenanthryl)propionic acid (M9PP acid). In each case, the diastereomeric esters obtained were readily separated by HPLC. The stereochemistry of the esters could be assigned from their respective ¹H NMR analyses. Solvolyses of the esters gave enantiopure alcohols and acids. MαNP and M9PP acids displayed almost equivalent properties in ¹H NMR anisotropy. The chiral resolving ability of M9PP acid was slightly superior to that of MaNP acid in HPLC.

2005 Elsevier Ltd. All rights reserved.

1. Introduction

Semiochemicals are compounds involved in the chemical interactions between organisms. A semiochemical that conveys information between the same species is known as a pheromone. Various relationships have been reported between the chirality of insect pheromones and their biological activity.^{[1,2](#page-8-0)} Therefore, enantiopure compounds are necessary for evaluating the biological activity of each enantiomer. Enantiopurity is particularly important in pharmaceuticals, because the presence of a minor enantiomer impurity could cause undesirable effects.

Dale and Mosher reported various ¹H NMR shift reagents[.3](#page-8-0) Of these, MTPA 1 and MPA 2 have been used most widely to determine the absolute configurations of secondary alcohols and primary amines (Fig. 1). $4-6$ In the case of MPA 2, Trost et al. reported a slight loss of enantiopurity during the base hydrolysis of its ester derivative.^{[4](#page-8-0)} To increase the ¹H NMR anisotropy of MPA 2, Kusumi and Riguera added large aryl groups; that is, 2-methoxy-2-(2-naphthyl)acetic acid 3 $(2NMA).^{7-9}$

Figure 1. The structures of chiral resolving agents 1–5, thalidomide 6, and methylthalidomide 7.^{[10,11](#page-8-0)}

Hashimoto et al. determined the rate of racemization of single-enantiomer thalidomide 6 under physiological conditions.^{[10,11](#page-8-0)} They also prepared both enantiomers of methylthalidomide 7, a nonracemizable thalidomide

^{*} Corresponding author. Tel.: +81 298 38 6267; fax: +81 298 38 6028; e-mail: ichikawa@affrc.go.jp

^{0957-4166/\$ -} see front matter © 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2005.05.036

analogue, and found that only (S) -7 caused an increase in tumor necrosis factor (TNF)- α production. This prompted us to develop 2-methoxy-2-(aryl)propionic acids as nonracemizable chiral resolving agents.

 $M\alpha NP$ acid 4 and M9PP acid 5 are useful for preparing enantiopure alcohols, because of their susceptibility to chiral separation and the advantage of not racemizing during condensation reactions and HPLC separa-tion.^{[12–22](#page-8-0)} Acids 4 and 5 are also useful for determining the absolute configuration of secondary alcohols using the ¹H NMR anisotropy method.

Considering the crystalline structure of $(1R, 2S, 5R)$ -menthol M9PP ester, 21 we proposed the conformational model^{[22](#page-9-0)} shown in Figure 2: (1) the methoxyl and carbonyl oxygen atoms are *syn*-periplanar to each other; (2) the alcohol methine proton is also syn-periplanar to the ester carbonyl oxygen atom; (3) the methyl group is syn-periplanar to H-2 in the M α NP ester or H-10 in the M9PP ester.

Recently, Seco et al. proposed a new conformational model for MTPA esters;^{[9](#page-8-0)} three conformations of similar populations are present for both (R) - and (S) -MTPA esters, resulting in smaller $\Delta\delta$ values. By contrast, the MaNP and M9PP esters show large $\Delta\delta$ values in ¹H NMR and large separation factors in HPLC.

M9PP acid (S) -(+)-5 has been used for the enantioresolution of 3-octanol (\pm) -8 and sulcatol (\pm) -9 (Fig. 3).^{[21,22](#page-9-0)} Application examples are still necessary in order to develop 2-methoxy-2-(aryl)propionic acids as chiral resolving agents. Here, we report the enantioresolution of three semiochemicals (3-octanol 8, sulcatol 9, and 1-octen-3-ol 10) (Fig. 3) using M α NP acid (S)-(+)-4. The results were compared to those obtained with M9PP acid (S) -(+)-5 in terms of their HPLC separation and ¹H NMR anisotropy. We also investigated the stability of the MaNP and M9PP moieties toward catalytic hydrogenation.

 δ \sim \sim $^{\circ}$ O H_3C _N \sqrt{R} ^{CH₃} **(S)-M**α**NP ester** H R2 R_1 O O H_3C \bigvee \bigve **(S)-M9PP ester** O H R2 R_1 Syn Syn $H \bigcap^{Syn}$ $\downarrow \downarrow H \bigcap^{Syn}$ **Svr** Syn 1 2 9 10

Figure 2. The preferred conformations of (S) -M α NP and (S) -M9PP esters.

2. Results and discussion

Compounds 8–10 are mono-alcohols possessing C8-carbon skeletons (Fig. 3); the simple structures of alcohols 8–10 are useful for developing the novel chiral resolving agents.

The enantioresolution of 3-octanol (\pm) -8 was conducted using M α NP acid (S)-(+)-4. Both enantiomers of 8 are ant pheromones. Fujiwhara and Mori synthesized (R)- $(-)$ - and $(S)-(+)$ -3-octanol from methyl (R) -3-hydroxypentanoate and its (S) -isomer, respectively.^{[24](#page-9-0)} 3-Octanol (t) -8 was esterified with M α NP acid (S)-(+)-4 using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP) in CH_2Cl_2 . The crude products were purified using normal phase HPLC to afford the two diastereomeric esters $(-)$ -11a and $(+)$ -11b in 41% and 43% yields, respectively. As shown in Figure 4, the separation factor (α value) for esters $(-)$ -11a and $(+)$ -11b was 1.45 with the Silica SG80 column.

[Figure 5](#page-2-0) shows the ${}^{1}H$ NMR chemical shifts of esters (-)-11a and (+)-11b, and the $\Delta \delta$ {= δ [(+)-11b] - δ [(-)-11a]} values in $CDCI₃$. The ${}^{1}H$ NMR signals of esters $(-)$ -11a and $(+)$ -11b were assigned from DQF COSY, PS NOESY, and HMBC spectra (600 or 800 MHz, CDCl₃). The positive $\Delta\delta$ values were observed for the protons at the 1- and 2-positions of the alcohol moiety (+0.56 and +0.2, respectively). Conversely, negative $\Delta\delta$ values were observed for the protons at the 4- to 8-positions. Based on the conformational hypotheses shown in Figure 2, the stereochemistry was represented as $(S,R)-(-)$ -11a and $(S,S)-(+)$ -11b. (See lit.^{[17](#page-9-0)}) for the definition of $\Delta\delta$ and the assignment of stereochemistry.) The zigzag conformation of the alcohol moiety explained the largest $\Delta\delta$ values at the γ -position.^{[7](#page-8-0)}

As shown in [Scheme 1,](#page-2-0) the solvolysis of the first-eluted ester (S, R) - $(-)$ -11a gave 3-octanol (R) - $(-)$ -8 {63%, $[\alpha]_{\text{D}}^{30} = -8$ (c 0.16, CHCl₃), lit.^{[24](#page-9-0)}: $[\alpha]_{\text{D}}^{22} = -9.7$ (c 0.93,

Figure 4. The HPLC separation of diastereomeric esters formed from 3-octanol (\pm) -8 and M α NP acid (S)-(+)-4 (Silica SG80, hexane–EtOAc 9:1, UV 300 nm, α = 1.45, T_0 : 1,3,5-tri-tert-butylbenzene).

Figure 3. The structures of 3-octanol 8, sulcatol 9, and 1-octen-3-ol 10.

Figure 5. The ¹H NMR chemical shift data and $\Delta\delta$ values for esters (-)-11a and (+)-11b (600 MHz, CDCl₃). The black bars show the relative intensity of the $\Delta\delta$ values.

Scheme 1. Preparation of single enantiomer 3-octanol, M9PP esters (+)-12a, and (+)-12b.

CHCl₃)}. 3-Octanol (R)-(-)-8 was esterified with acids (S) -(+)-4 and (S) -(+)-5 to give enantiopure (S,R) -(-)-11a and (S,R) -(+)-12a,^{[21](#page-9-0)} respectively. Notably, the retention of the stereochemistry after the solvolysis was confirmed. The solvolysis of the second-eluted ester (S, S) -(+)-11b gave 3-octanol (S) -(+)-8 {54%, $[\alpha]_D^{37} = +10$ $(c \ 0.14, \text{CHCl}_3), \text{ lit.}^{24}: [\alpha]_D^{22} = +10.1 \ (c \ 0.82, \text{CHCl}_3).$ 3-Octanol (S)-(+)-8 was esterified with M9PP acid (S) -(+)-5 giving ester (S, S) -(+)-12b.^{[21](#page-9-0)}

We have already reported the enantioresolution of 3-octanol (\pm) -8 using M9PP acid (S) - $(+)$ -5.^{[21](#page-9-0)} In the case of 3-octanol (\pm) -8, acids (S) - $(+)$ -4 and (S) - $(+)$ -5 revealed nearly equivalent chiral resolving abilities in HPLC

([Table 1](#page-3-0), α = 1.45 and 1.47, respectively) and ¹H NMR anisotropy. [See lit.^{[21](#page-9-0)} for the $\Delta\delta$ values of M9PP esters $(S,R)-(+)$ -12a and $(S,S)-(+)$ -12b.]

6-Methyl-5-hepten-2-ol 9 (sulcatol) is known as the aggregation pheromone of the ambrosia beetle, Gnatho-trichus sulcatus.^{[25,26](#page-9-0)} Sulcatol (\pm)-9 was esterified with M α NP acid (S)-(+)-4 using EDC and DMAP in $CH₂Cl₂$. The crude products were purified by preparative HPLC using the prepacked glass column, affording esters $(-)$ -13a and $(+)$ -13b in 43% and 37% yields, respectively. The separation factor $(\alpha \text{ value})$ for esters $(-)$ -13a and $(+)$ -13b was 1.31 with the Silica SG80 column [\(Fig. 6\)](#page-3-0).

Table 1. Separation factors for MaNP and M9PP esters

	3-Octanol (\pm) -8	Sulcatol (\pm) -9	1-Octen-3-ol (\pm) -10
M αNP acid (S)-(+)-4	$\alpha = 1.45$	1.JI	1.47
M9PP acid $(S)-(+)$ -5	$\alpha = 1.47$	γ 1.J	1.JZ

Silica SG80, hexane/EtOAc, UV 300 nm, $\alpha = (T_2 - T_0)/(T_1 - T_0)$, T_0 : 1,3,5-tri-tert-butylbenzene.

Figure 6. The HPLC separation of diastereomeric esters formed from sulcatol (\pm) -9 and M α NP acid (S)-(+)-4 (Silica SG80, hexane–EtOAc 9:1, UV 300 nm, $\alpha = 1.31$, T_0 : 1,3,5-tri-tert-butylbenzene).

The 1 H NMR signals of esters (-)-13a and (+)-13b were assigned from DQF COSY and PS NOESY spectra (800 MHz, CDCl₃). The chemical shift and the $\Delta\delta$ $\{=\delta[(+)-13b] - \delta[(-)-13a]\}\$ values are shown in Figure 7. A positive $\Delta\delta$ value was observed for the terminal methyl protons (+0.27), and the negative $\Delta\delta$ values were observed for the protons of the rest of alcohol moiety (Fig. 7). Therefore, the stereochemistry was assigned as (S, R) -(-)-13a and (S, S) -(+)-13b.^{[17](#page-9-0)}

The solvolysis of first-eluted ester (S,R) -(-)-13a gave sulcatol (R) -(-)-9 {69%, $[\alpha]_D^{26} = -13$ (c 0.19, EtOH), lit.²⁶: $[\alpha]_D^{23} = -14.5$ (c 0.74, EtOH)}, together with enantiopure M α NP acid (S)-(+)-4 (87%). Sulcatol (R)-(-)-9 was esterified with the recovered M α NP acid (S)-(+)-4 using EDC and DMAP in CH_2Cl_2 yielding ester (S,R) - $(-)$ -13a only, in 79% yield [\(Scheme 2\)](#page-4-0). The solvolysis of the second-eluted ester (S, S) -(+)-13b gave sulcatol $(S)_{3}^{\bullet}$ (+)-9 {93%, $[\alpha]_{D}^{27}$ = +15 (c 0.21, EtOH), lit.^{[26](#page-9-0)}: $[\alpha]_{\text{D}}^{23} = +14.4$ (c 0.998, EtOH)} and M α NP acid (S)- $(+)$ -4 (91%). Sulcatol (S)-(+)-9 was esterified with the recovered M α NP acid (S)-(+)-4 using EDC and DMAP in CH₂Cl₂ yielding ester (S, S) -(+)-13b only (85%).

The separation factor for sulcatol M α NP esters (S,R) - $(-)$ -13a and (S, S) - $(+)$ -13b was 1.31, while that of M9PP esters^{[22](#page-9-0)} was 1.37 (Table 1). In the case of sulcatol

(\pm)-9, the observed $\Delta\delta$ values of M α NP esters were nearly equal to those of M9PP esters. (See lit.^{[22](#page-9-0)} for the NMR data of sulcatol M9PP esters.)

1-Octen-3-ol 10 has been isolated from many natural sources:^{[27–30](#page-9-0)} 1-Octen-3-ol 10 was isolated from cattle odors as a potent olfactory stimulant and attractant for tsetse flies.^{[27](#page-9-0)} 1-Octen-3-ol 10 was also reported as an attractive semiochemical for the foreign grain beetle, Ahasverus advena[29](#page-9-0) and the African malaria mosquito, Anopheles gambiae. [30](#page-9-0) The absolute configuration of 1 octen-3-ol $(-)$ -10 was determined as R by empirical NMR studies.^{[28](#page-9-0)} 1-Octen-3-ol (\pm)-10 was condensed with M α NP acid (S)-(+)-4 using EDC and DMAP in CH₂Cl₂ to give esters $(-)$ -14a and $(+)$ -14b in 40% and 43% yields, respectively. The separation factor for esters $(-)$ -14a and $(+)$ -14b was 1.47 with the Silica SG80 column [\(Fig. 8](#page-4-0)).

The 1 H NMR signals of esters (-)-14a and (+)-14b were assigned from DQF COSY spectra $(500 \text{ MHz}, \text{CDCl}_3)$. The $\Delta \delta$ {= δ [(+)-14b] - δ [(-)-14a]} values were presented in [Figure 9](#page-4-0), from which the stereochemistry was assigned as (S, S) -(-)-14a and (S, R) -(+)-14b.^{[17](#page-9-0)}

The solvolysis of the first-eluted ester (S, S) -(-)-14a yielded enantiopure 1-octen-3-ol (S) - $(+)$ -10 {77%, $[\alpha]_{\text{D}}^{26} = +19$ (c 0.18, EtOH), lit.^{[28](#page-9-0)}: $[\alpha]_{\text{D}}^{20} = +20.6$ (c 5.3, EtOH), together with M α NP acid (S)-(+)-4 (95%). 1-Octen-3-ol $(S)-(+)$ -10 was condensed with recovered $(S)-(+)$ -4 using EDC and DMAP in CH₂Cl₂ giving (S, S) -(-)-14a only [\(Scheme 3](#page-4-0)). The catalytic hydrogenation of (S, R) -(+)-14b gave (S, S) -(+)-11b only, in 89% yield [\(Scheme 1\)](#page-2-0); therefore, the empirical NMR study of 1-octen-3-ol 10 was linked to the asymmetric synthesis of 3-octanol $8.^{24,28}$ $8.^{24,28}$ $8.^{24,28}$

Finally, the enantioresolution of 1-octen-3-ol (\pm) -10 was attempted using M9PP acid $(S)-(+)$ -5. 1-Octen-3-ol (\pm) -10 was esterified with (S) -(+)-5 using 1,3-dicyclohexyl-

Figure 7. The ¹H NMR chemical shift data and $\Delta\delta$ values for esters (-)-13a and (+)-13b (800 MHz, CDCl₃). The black bars show the relative intensity of the $\Delta\delta$ values.

Scheme 2. Preparation of the single-enantiomer sulcatol and the reformations of $M\alpha NP$ esters (-)-13a and (+)-13b.

Figure 8. The HPLC separation of diastereomeric esters formed from 1-octen-3-ol (\pm)-10 and MαNP acid (S)-(+)-4 (Silica SG80, hexane– EtOAc 92:8, UV 300 nm, $\alpha = 1.47$, T_0 : 1,3,5-tri-tert-butylbenzene).

carbodiimide (DCC), DMAP, and (+)-10-camphorsulfonic acid (CSA) in CH_2Cl_2 affording esters (+)-15a and (+)-15b in 37% and 43% yields, respectively. The separation factor for esters $(+)$ -15a and $(+)$ -15b was 1.52 with the Silica SG80 column ([Fig. 10](#page-5-0)).

The 1 H NMR signals of esters (+)-15a and (+)-15b were assigned from DQF COSY and HSQC spectra $(800 \text{ MHz}, \text{CDCl}_3)$. The stereochemistry was assigned as (S, S) -(+)-15a and (S, R) -(+)-15b from the $\Delta \delta$ $\{=\delta[(+)$ -15b] $-\delta[(+)$ -15a]} values [\(Fig. 11\)](#page-5-0).^{[17](#page-9-0)}

The solvolysis of the first fraction (S_{ζ}, S) -(+)-15a yielded 1-octen-3-ol (S) -(+)-10 {80%, $[\alpha]_D^{26} = +19$ $(c \ 0.21,$ EtOH)} and M9PP acid (S) -(+)-5 (82%). 1-Octen-3-ol $(S)-(+)$ -10 was condensed with $(S)-(+)$ -5 using DCC, DMAP, and CSA in CH_2Cl_2 giving ester (S, S) -(+)-15a ([Scheme 4\)](#page-5-0). The catalytic hydrogenation of (S, S) -(+)-15a gave ester (S, R) -(+)-12a^{[21](#page-9-0)} in 70% yield ([Scheme 1\)](#page-2-0).

Figure 9. The ¹H NMR chemical shift data and $\Delta\delta$ values for esters (-)-14a and (+)-14b (500 MHz, CDCl₃). The black bars show the relative intensity of the $\Delta\delta$ values.

Scheme 3. Preparation of the single-enantiomer 1-octen-3-ol and reformation of M α NP ester (-)-14a.

Figure 10. The HPLC separation of diastereomeric esters formed from 1-octen-3-ol (\pm) -10 and M9PP acid (S) - $(+)$ -5 (Silica SG80, hexane– EtOAc 9:1, UV 300 nm, α = 1.52, T_0 : 1,3,5-tri-tert-butylbenzene). Only in the case of 1-octen-3-ol M9PP esters, were the separated diastereomers mixed again, and analyzed by HPLC.

The solvolysis of the second fraction $(S,R)-(+)$ -15b yielded 1-octen-3-ol (R) -(-)-10 {82%, $[\alpha]_D^{27} = -19$ (c 0.23, EtOH), lit.^{[28](#page-9-0)}: $[\alpha]_D^{20} = -20.2$ (c 7.3, EtOH)}, and M9PP acid $(S)-(+)$ -5 (49%). 1-Octen-3-ol $(R)-(-)$ -10 was esterified with M9PP acid $(S)-(+)$ -5 yielding ester $(S,R)-(+)$ -15b $(76%)$.

The separation factor for 1-octen-3-ol $M\alpha NP$ esters (S, S) -(-)-14a and (S, R) -(+)-14b was 1.47, while that of M9PP esters (S, S) -(+)-15a and (S, R) -(+)-15b was 1.52 ([Table 1\)](#page-3-0). In the case of 1-octen-3-ol (\pm) -10, M α NP es-

ters and M9PP esters had similar $\Delta\delta$ values on ¹H NMR ([Figs. 9 and 11\)](#page-4-0).

The M α NP and M9PP moieties caused similar ${}^{1}H$ NMR anisotropy in the alcohol part of the esters. The conformational models shown in [Figures 2 and 5](#page-1-0) could explain these results: The two benzene rings that exist in both acids are important for the recognition of the alcohol chirality. A similar conformational model has been pro-posed for the 2NMA ester.^{[9](#page-8-0)} The chiral resolving ability of M9PP acid $(S)-(+)$ -5 was slightly superior to that of M α NP acid (S)-(+)-4 in HPLC ([Table 1](#page-3-0)).

3. Conclusion

M α NP and M9PP acids are recyclable and effective for HPLC separation and ${}^{1}H$ NMR anisotropy: (1) both the acids could resolve the alcohol enantiomers via esterification; (2) successive NMR analyses assigned the stereochemistry of $M\alpha NP$ and $M9PP$ esters; and (3) solvolysis of the esters yielded enantiopure alcohols and acids. The method using the MaNP and M9PP acids was applicable to 1-octen-3-ol, an allylic alcohol. The $M\alpha NP$ and $M9PP$ moieties were stable against catalytic hydrogenation. Clearly, enantioresolution using

Figure 11. The ¹H NMR chemical shift data and $\Delta\delta$ values for esters (+)-15a and (+)-15b (800 MHz, CDCl₃). The black bars show the relative intensity of the $\Delta\delta$ values.

Scheme 4. Preparation of single-enantiomer 1-octen-3-ol and re-formation of M9PP esters (+)-15a and (+)-15b.

 $M\alpha NP$ and M9PP acids is useful for the small-scale synthesis of natural products and the preparation of single enantiomer agrochemicals and pharmaceuticals.

4. Experimental

4.1. General

The NMR spectra were obtained using a Bruker (Rheinstetten, Germany) Avance800, a Bruker DRX600, or a Bruker Avance500 in CDCl₃ with tetramethylsilane (TMS) as an internal standard. The IR spectra were recorded as thin films (neat) mounted on KBr plates with a Perkin–Elmer (Norwalk, CT) 1760X or a Shimadzu (Kyoto, Japan) FTIR-8200. The MS data were obtained with an Agilent (Palo Alto, CA) 1100 LC/MSD system. The optical rotations were determined on a JASCO (Tokyo, Japan) DIP1000 spectropolarimeter. Wakogel C-200 (Wako Pure Chemical Industries, Osaka, Japan) was used for the open column chromatography. HPLC was performed using the Shimadzu LC10AT VP systems equipped with: (1) diode array detector–refractive index detector, (2) UV–vis detector. The CIG prepacked silica gel and ODS columns (Kusano Scientific Instrument, Tokyo, Japan) were used for preparative HPLC. A Silica SG80 column (4.6 mm $\varnothing \times 250$ mm, Shiseido, Tokyo, Japan) was used for analytical HPLC.

4.2. Enantioresolution of (\pm) -3-octanol using M α NP acid

A mixture of M α NP acid (S)-(+)-4 (49 mg), EDC (81 mg), DMAP (109 mg), and 3-octanol (\pm) -8 (120 μ L) in CH₂Cl₂ (0.75 mL) was allowed to stand for 16 h. The mixture was chromatographed over silica gel with $CH₂Cl₂$. The diastereomeric esters obtained were separated by HPLC on silica gel (hexane–EtOAc 47:3), giving the first eluted ester $(S,R)(-)$ -11a (30 mg, 41%) and the second eluted ester (S, S) -(+)-11b (31 mg, 43%).

4.2.1. 3-Octanol MαNP ester (S,R)-(-)-11a. ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3)$: δ 8.45 (1H, m), 7.83 (1H, m), 7.82 $(1H, m)$, 7.61 (1H, dd, $J = 7$, 1 Hz), 7.48–7.43 (3H, m), 4.79 (1H, m), 3.11 (3H, s), 2.00 (3H, s), 1.4 (2H, m), 1.2 (8H, m), 0.84 (3H, t, $J = 7$ Hz), 0.22 (3H, t, $J = 7.5$ Hz); ¹³C NMR (151 MHz): δ 173.89, 135.37, 134.02, 131.45, 129.29, 128.56, 126.32, 125.64, 125.62, 125.42, 124.62, 81.57, 76.57, 50.87, 33.10, 31.60, 26.32, 24.81, 22.49, 21.74, 13.97, 8.52; IR (KBr, neat): v_{max} 2934, 2860, 1746, 1727, 1254, 1139, 1114, 806, 780 cm⁻¹; LC-MS (API-ESI, CH₃CN-H₂O₂ 24:1): mlz 365 ($[M+Na]^+$, 100), 311 (2), 199 (11); $\left[\alpha\right]_D^{31} = -12$ (c 0.68, EtOH).

4.2.2. 3-Octanol MαNP ester (S,S)-(+)-11b. ¹H NMR $(600 \text{ MHz}, \text{CDC1}_3)$: δ 8.48 (1H, m), 7.83 (1H, m), 7.81 (1H, br d, $J = 8$ Hz), 7.60 (1H, dd, $J = 7$, 1 Hz), 7.48– 7.43 (3H, m), 4.77 (1H, sept, $J = 6$ Hz), 3.09 (3H, s), 2.00 (3H, s), 1.4 (2H, m), 1.1 (2H, m), 0.9 (2H, m), 0.78 (3H, t, $J = 7.5$ Hz), 0.7 (2H, m), 0.66 (3H, t, $J = 7$ Hz), 0.5 (1H, m), 0.4 (1H, m); ¹³C NMR (151 MHz): d 173.88, 135.20, 134.04, 131.53, 129.33,

128.55, 126.38, 125.72, 125.68, 125.48, 124.59, 81.50, 76.46, 50.80, 32.91, 31.33, 26.58, 23.83, 22.22, 21.68, 13.89, 9.54; IR (KBr, neat): v_{max} 2934, 2860, 1746, 1252, 1139, 1114, 806, 780 cm⁻¹; LC-MS (API-ESI, CH₃CN–H₂O 24:1): m/z 365 ([M+Na]⁺, 100), 311 (2), 199 (10); $[\alpha]_D^{33} = +15$ (c 0.72, EtOH).

4.2.3. 3-Octanol (R)-(-)-8. A mixture of ester (S, R) - $(-)$ -11a (67 mg) and 28% NaOMe/MeOH (1.5 mL) was refluxed for 7 h under argon. The solution was diluted with ice water, and extracted with $CH₂Cl₂$ twice. The organic layer was washed with brine, dried over anhydrous $Na₂SO₄$, and concentrated in vacuo. The crude product was chromatographed over silica gel with CH₂Cl₂ to give 3-octanol (R) -(-)-8 (16 mg, 63%): $[\alpha]_D^{30} = -8$ (c 0.16, CHCl₃).

4.2.4. 3-Octanol (S) - $(+)$ -8. Ester (S,S) - $(+)$ -11b (68 mg) was similarly hydrolyzed with 28% NaOMe/MeOH (1.5 mL) yielding 3-octanol (S) - $(+)$ -8 $(14 \text{ mg}, 54\%)$: $[\alpha]_D^{37} = +10$ (c 0.14, CHCl₃).

4.2.5. Preparation of M αNP ester $(S,R)-(-)$ -11a from (R) -(-)-3-octanol. 3-Octanol (R) -(-)-8 (8 mg) prepared above was esterified with M α NP acid (S)-(+)-4 (21 mg) using EDC (40 mg) and DMAP (55 mg) in CH_2Cl_2 (0.5 mg). The crude product was chromatographed over silica gel giving ester (S,R) -(-)-11a (10 mg, 48%), which was identical with the authentic sample.

4.2.6. Preparation of M9PP ester $(S,R)-(+)$ -12a from (R) -(-)-3-octanol. 3-Octanol (R) -(-)-8 (8 mg) prepared above was similarly esterified with M9PP acid $(S)-(+)$ -5 (11 mg) yielding ester $(S,R)-(+)$ -12a (13 mg, 84%), which was identical with the authentic sample.^{[21](#page-9-0)}

4.2.7. Preparation of M9PP ester (S, S) -(+)-12b from (S) - $(+)$ -3-octanol. 3-Octanol $(S)-(+)$ -8 (7 mg) prepared above was similarly esterified with M9PP acid $(S)-(+)$ -5 (10 mg) yielding ester (S, S) -(+)-12b (12 mg, 86%), which was identical with the authentic sample.^{[21](#page-9-0)}

4.3. Enantioresolution of (\pm) -sulcatol using M α NP acid

A mixture of M α NP acid (S)-(+)-4 (50 mg), EDC (77 mg), DMAP (103 mg), and sulcatol (\pm)-9 (95 μ L) in CH_2Cl_2 (0.5 mL) was allowed to stand for 16 h. The crude products were chromatographed over silica gel with $CH₂Cl₂$. The diastereomeric esters obtained were separated by HPLC on silica gel (hexane–EtOAc 9:1) giving the first eluted ester $(S,R)(-)$ -13a (32 mg, 43%) and the second eluted ester (S, S) -(+)-13b (27 mg, 37%).

4.3.1. Sulcatol M α NP ester (S,R) -(-)-13a. ¹H NMR $(800 \text{ MHz}, \text{CDCl}_3): \delta 8.40 \text{ (1H, m)}, 7.84 \text{ (1H, m)}, 7.82 \text{)}$ (1H, dt, $J = 8$, 1 Hz), 7.61 (1H, dd, $J = 7$, 1 Hz), 7.46 (2H, m), 7.45 (1H, m), 4.97 (1H, m), 4.90 (1H, m), 3.11 (3H, s), 1.99 (3H, s), 1.8 (2H, m), 1.64 (3H, br d, $J = 1$ Hz), 1.48 (3H, br s), 1.5 (1H, m), 1.3 (1H, m), 0.87 (3H, d, $J = 6$ Hz); ¹³C NMR (126 MHz): δ 173.77, 135.39, 134.03, 132.06, 131.26, 129.30, 128.63, 126.27, 125.62, 125.51, 125.23, 124.65, 123.34, 81.55,

71.94, 50.96, 35.67, 25.65, 23.85, 21.79, 19.36, 17.56; IR (KBr, neat): v_{max} 2974, 2932, 1744, 1727, 1251, 1132, 1123, 1065, 806, 780 cm⁻¹; LC-MS (API-ESI, CH₃CN–H₂O 19:1): m/z 363 ([M+Na]⁺, 100), 309 (4), 199 (31); $[\alpha]_D^{25} = -37$ (c 0.54, EtOH).

4.3.2. Sulcatol M αNP ester (S, S) -(+)-13b. $\mathrm{^1H}$ NMR (800 MHz, CDCl₃): δ 8.44 (1H, br d, $J = 8$ Hz), 7.82 (1H, m), 7.81 (1H, br d, $J = 8$ Hz), 7.59 (1H, dd, $J = 7$, 1 Hz), 7.47 (1H, m), 7.45 (1H, m), 7.44 (1H, m), 4.86 $(1H, m)$, 4.71 $(1H, br t, J = 7 Hz)$, 3.09 $(3H, m)$, 1.98 (3H, br s), 1.54 (3H, br d, $J = 1$ Hz), 1.3 (3H, m), 1.23 (3H, br s), 1.2 (1H, m), 1.14 (3H d, $J = 6$ Hz); ¹³C NMR (126 MHz): δ 173.79, 135.14, 134.05, 131.71, 131.44, 129.40, 128.62, 126.39, 125.70, 125.68, 125.35, 124.58, 123.22, 81.45, 71.92, 50.86, 35.61, 25.54, 23.22, 21.68, 19.71, 17.35; IR (KBr, neat): v_{max} 2973, 2932, $1743, 1734, 1250, 1133, 1122, 1066, 806, 780$ cm⁻¹; LC-MS (API-ESI, CH₃CN–H₂O 19:1): mlz 363 ([M+Na]⁺, 100), 309 (2), 199 (8); $[\alpha]_D^{27} = +52$ (c 0.46, EtOH).

4.3.3. Sulcatol (R)-(-)-9. A mixture of ester $(S,R)-(-)$ -13a (73 mg) and 28% NaOMe/MeOH (1.5 mL) was refluxed for 6 h under argon. The solution was diluted with ice water, and extracted with $CH₂Cl₂$ three times. The organic layer was washed with brine, dried over anhydrous $Na₂SO₄$, and concentrated in vacuo. The crude product was chromatographed over silica gel with CH_2Cl_2 to give sulcatol (R) -(-)-9 (19 mg, 69%): $[\alpha]_{\text{D}}^{26} = -13$ (c 0.19, EtOH). The aqueous layer was acidified with $2 M$ HCl and extracted with $CH₂Cl₂$ three times. The organic layer was washed with brine, dried over anhydrous $Na₂SO₄$, and concentrated in vacuo giving M α NP acid (S)-(+)-4 (43 mg, 87%). The chiral HPLC analysis (Chiralcel OD-RH, CH_3CN-H_2O 13:7) of the (S) -M α NP acid methyl ester (prepared using $2 M$ trimethylsilyldiazomethane^{[23](#page-9-0)} ether solution) revealed that (S) - $(+)$ -4 recovered was enantiopure.

4.3.4. Sulcatol (S)-(+)-9. Ester (S, S) -(+)-13b (60 mg) was similarly hydrolyzed with 28% NaOMe/MeOH (1.5 mL) yielding sulcatol $(S)-(+)$ -9 $(21 \text{ mg}, 93\%)$: $[\alpha]_{\text{D}}^{27} = +15$ (c 0.21, EtOH), and enantiopure M α NP acid (S) -(+)-4 (37 mg, 91%).

4.3.5. Preparation of M αNP ester $(S,R)-(-1)3a$ from (R) -(-)-sulcatol. Sulcatol (R) -(-)-9 (10 mg) was similarly converted to M α NP ester (S, R) -(-)-13a (21 mg, 79%), which was identical with the authentic sample described above.

4.3.6. Preparation of M α NP ester (S, S) -(+)-13b from (S) - $(+)$ -sulcatol. Sulcatol $(S)-(+)$ -9 (8 mg) was similarly converted to M α NP ester (S, S) -(+)-13b (18 mg, 85%), which was identical with the authentic sample described above.

4.4. Enantioresolution of (\pm) -1-octen-3-ol using M αNP acid

A mixture of M α NP acid (S)-(+)-4 (39 mg), EDC (103 mg), DMAP (130 mg), and 1-octen-3-ol (\pm) -10 (120 μ L) in CH₂Cl₂ (0.5 mL) was allowed to stand for 20 h. The crude products were chromatographed over silica gel with $CH₂Cl₂$. The diastereomeric esters obtained were separated by HPLC on silica gel (hexane– EtOAc 9:1), giving the first eluted ester (S, S) -(-)-14a (23 mg, 40%) and the second eluted ester $(S,R)-(+)$ -14b (25 mg, 43%).

4.4.1. 1-Octen-3-ol M α NP ester (S, S) -(-)-14a. ¹H NMR (500 MHz, CDCl₃): δ 8.38 (1H, m), 7.84 (1H, m), 7.82 (1H, br d, $J = 8$ Hz), 7.63 (1H, dd, $J = 7$, 1 Hz), 7.48–7.42 (3H, m), 5.45 (1H, ddd, $J = 17, 11$, 6 Hz), 5.25 (1H, m), 4.80 (1H, dt, $J = 11$, 1 Hz), 4.66 $(1H, dt, J = 17, 1 Hz), 3.13 (3H, s), 2.00 (3H, s), 1.55–$ 1.40 (2H, m), 1.25–1.05 (6H, m), 0.82 (3H, t, $J = 7$ Hz); ¹³C NMR (126 MHz, CDCl₃): δ 173.39, 135.78, 135.40, 134.03, 131.25, 129.34, 128.63, 126.33, 125.63, 125.52, 125.32, 124.68, 116.25, 81.67, 75.53, 51.02, 33.96, 31.39, 24.54, 22.43, 21.91, 13.94; IR (KBr, neat): v_{max} 2934, 2860, 1747, 1730, 1250, 1134, 1121, 806, 779 cm⁻¹; LC–MS (API-ESI₃, CH₃CN–H₂O) 24:1): 363 ($[M+Na]^+, 100$), 144 (6); $[\alpha]_D^{28} = -5$ (c 0.58, EtOH).

4.4.2. 1-Octen-3-ol M αNP ester (S,R) -(+)-14b. ¹H NMR (500 MHz, CDCl₃): δ 8.45 (1H, m), 7.86–7.80 $(2H, m)$, 7.59 (1H, dd, $J = 7$, 1 Hz), 7.49–7.43 (3H, m), 5.66 (1H, ddd, $J = 17$, 11, 6 Hz), 5.21 (1H, m), 5.14 $(H, dt, J = 17, 1 Hz), 5.08 (1H, dt, J = 11, 1 Hz), 3.10$ (3H, s), 2.00 (3H, s), 1.30–1.15 (2H, m), 0.95–0.72 $(4H, m)$, 0.67 (3H, t, J = 7 Hz), 0.60–0.40 (2H, m); ¹³C NMR (126 MHz, CDCl₃): δ 173.39, 136.16, 135.04, 134.04, 131.50, 129.41, 128.58, 126.43, 125.74, 125.69, 125.40, 124.58, 116.57, 81.44, 75.36, 50.84, 33.64, 31.12, 23.70, 22.19, 21.60, 13.87; IR (KBr, neat): v_{max} 2932, 2860, 1747, 1730, 1250, 1136, 1123, 806, 779 cm⁻¹; LC-MS (API-ESI, CH₃CN-H₂O 24:1): 363 $([M+Na]^+, 100); [\alpha]_D^{28} = +9 \ (c \ 0.63, EtOH).$

4.4.3. 1-Octen-3-ol (S) -(+)-10. (S, S) -(-)-14a (104 mg) was similarly hydrolyzed with 28% NaOMe/MeOH (1.5 mL) yielding 1-octen-3-ol (S) - $(+)$ -10 $(30 \text{ mg}, 77\%)$: $[\alpha]_D^{26} = +19$ (c 0.18, EtOH), and M α NP acid (S)-(+)-4 $(67 \text{ mg}, 95\%)$. The chiral HPLC analysis of (S) -M α NP acid methyl ester revealed that acid $(S)-(+)$ -4 recovered was enantiopure.

4.4.4. Preparation of M αNP ester (S, S) -(-)-14a from (S) -(+)-1-octen-3-ol. 1-Octen-3-ol (S) -(+)-10 (2 mg) prepared above was esterified with M α NP acid (S)-(+)-4 (60 mg) using EDC (121 mg) and DMAP (121 mg) in CH_2Cl_2 (0.5 mL). The crude product was chromatographed over silica gel (1st CH_2Cl_2 ; 2nd hexane/EtOAc) giving ester (S, S) -(-)-14a (5 mg, 94%).

4.4.5. Hydrogenation of M αNP ester $(S,R)-(+)$ -14b. Ester (S, R) -(+)-14b (30 mg) and 5% palladiumcarbon (11 mg) were stirred in EtOAc (2 mL) under $H₂$ for 3 h. The suspension was filtered through Celite, and concentrated in vacuo. The crude product was chromatographed on silica gel (Kieselgel $\bar{6}0$, EtOAc) giving ester (S, S) -(+)-11b (27 mg, 89%).

4.5. Enantioresolution of (±)-1-octen-3-ol using M9PP acid

1-Octen-3-ol (\pm) -10 (120 μ L) was similarly esterified with M9PP acid $(S)-(+)$ -5 (53 mg) using DCC (112 mg), DMAP (123 mg), and CSA (26 mg) in CH_2Cl_2 (0.5 mL) yielding the first eluted ester (S, S) -(+)-15a (27 mg, 37%) and the second eluted ester $(S,R)-(+)$ -15b $(32 \text{ mg}, 43\%)$.

4.5.1. 1-Octen-3-ol M9PP ester (S, S) -(+)-15a. ¹H NMR (800 MHz, CDCl₃): δ 8.72 (1H, br d, $J = 8$ Hz), 8.66 (1H, br d, $J = 8$ Hz), 8.44 (1H, dd, $J = 8$, 1 Hz), 7.91 (1H, br d, $J = 8$ Hz), 7.90 (1H, br s), 7.67 (1H, ddd, $J = 8$, 7, 1 Hz), 7.63 (1H, ddd, $J = 8$, 7, 1 Hz), 7.61 (1H, ddd, $J = 8$, 7, 1 Hz), 7.55 (1H, ddd, $J = 8$, 7, 1 Hz), 5.42 (1H, ddd, $J = 17, 11, 6$ Hz), 5.28 (1H, m), 4.80 (1H, dt, $J = 11$, 1 Hz), 4.71 (1H, dt, $J = 17$, 1 Hz), 3.16 (3H, s), 2.07 (3H, s), 1.52–1.40 (2H, m), 1.21–1.10 (6H, m), 0.80 (3H, t, $J = 7$ Hz); ¹³C NMR (201 MHz, CDCl3): d 173.45, 135.74, 133.76, 130.91, 130.82, 130.69, 130.08, 129.09, 127.22, 127.12, 126.85, 126.71, 126.41, 126.02, 122.94, 122.45, 116.50, 81.57, 75.72, 51.03, 33.92, 31.37, 24.59, 22.41, 21.93, 13.91; IR (KBr, neat): v_{max} 2932, 2859, 1746, 1730, 1250, 1127, 750, 731 cm⁻¹; LC–MS (API-ESI, CH₃CN–H₂O 9:1): 413 ([M+Na]⁺, 100), 359 (24), 249 (11); $[\alpha]_D^{28} = +32$ (c 0.49, EtOH).

4.5.2. 1-Octen-3-ol M9PP ester (S,R) -(+)-15b. ¹H NMR (800 MHz, CDCl₃): δ 8.71 (1H, br d, $J = 8$ Hz), 8.66 (1H, br d, $J = 8$ Hz), 8.50 (1H, dd, $J = 8$, 1 Hz), 7.91 (1H, br d, $J = 8$ Hz), 7.86 (1H, br s), 7.67 (1H, ddd, $J = 8$, 7, 1 Hz), 7.63 (1H, ddd, $J = 8$, 7, 1 Hz), 7.61 (1H, ddd, $J = 8, 7, 1$ Hz), 7.57 (1H, ddd, $J = 8, 7,$ 1 Hz), 5.64 (1H, ddd, $J = 17, 11, 6$ Hz), 5.23 (1H, m), 5.15 (1H, dt, $J = 17$, 1 Hz), 5.08 (1H, dt, $J = 11$, 1 Hz), 3.13 (3H, s), 2.07 (3H, s), 1.25–1.15 (2H, m), 0.88–0.73 (4H, m), 0.61 (3H, t, $J = 7$ Hz), 0.58–0.46 (2H, m); ¹³C NMR (126 MHz, CDCl₃): δ 173.49, 136.13, 133.39, 130.83, 130.77, 130.72, 130.27, 129.04, 127.37, 127.25, 126.93, 126.70, 126.48, 126.06, 122.89, 122.44, 116.71, 81.35, 75.55, 50.85, 33.60, 31.11, 23.77, 22.13, 21.61, 13.79; IR (KBr, neat): v_{max} 2933, 2860, 1748, 1250, 1132, 750, 732 cm⁻¹; LC-MS (API-ESI, CH₃CN-H₂O 9:1): 413 ($[M+Na]^+, 100$), 359 (20), 249 (20); $[\alpha]_D^{28} = +34$ (c 0.55, EtOH).

4.5.3. 1-Octen-3-ol (S) -(+)-10. Ester (S, S) -(+)-15a (80 mg) was hydrolyzed with 28% NaOMe/MeOH (1.5 mL) yielding 1-octen-3-ol $(S)-(+)$ -10 $(21 \text{ mg}, 80\%)$: $[\alpha]_D^{26} = +19$ (c 0.21, EtOH), and M9PP acid (S)-(+)-5 (47 mg, 82%). The chiral HPLC analysis (Chiralcel OD-RH, CH_3CN-H_2O 13:7) of (S)-M9PP acid methyl ester (prepared using $2 M$ trimethylsilyldiazomethane^{[23](#page-9-0)} hexane solution) revealed that the (S) -(+)-5 recovered was enantiopure.

4.5.4. Preparation of M9PP ester (S,S)-(+)-15a from (S)- $(+)$ -1-octen-3-ol. 1-Octen-3-ol (S) - $(+)$ -10 (14 mg) was esterified with M9PP acid $(S)-(+)$ -5 (40 mg) using DCC (104 mg), DMAP (128 mg), and CSA (38 mg) in CH_2Cl_2 (0.6 mL). The crude product was purified using

a silica gel cartridge (Wako Presep-C Silica Gel) and a column chromatography (silica gel, hexane/EtOAc) giving ester (S, S) -(+)-15a (20 mg, 47%).

4.5.5. 1-Octen-3-ol (R) -(-)-10. Ester (S,R) -(+)-15b (85 mg) was hydrolyzed with 28% NaOMe/MeOH (1.5 mL) giving 1-octen-3-ol (R) - $(-)$ -10 $(23 \text{ mg}, 82%)$: $[\alpha]_D^{27} = -19$ (c 0.23, EtOH), and M9PP acid (S)-(+)-5 $(30 \text{ mg}, 49\%).$

4.5.6. Preparation of M9PP ester $(S,R)-(+)$ -15b from (R) -(-)-1-octen-3-ol. 1-Octen-3-ol (R) -(-)-10 (10 mg) was esterified with M9PP acid $(S)-(+)$ -5 (25 mg) using EDC (103 mg) and DMAP (127 mg) in CH_2Cl_2 (0.6 mL). The crude product was chromatographed over silica gel (1st CH_2Cl_2 ; 2nd hexane/EtOAc) giving ester $(S,R)-(+)$ -15b (23 mg, 76%).

4.5.7. Hydrogenation of M9PP ester (S,S)-(+)- **15a.** Ester (S, S) -(+)-**15a** (20 mg) and 5% palladiumcarbon (13 mg) were stirred in EtOAc (2 mL) under $H₂$ for 6 h. The suspension was filtrated, and purified using HPLC (silica gel, hexane/EtOAc) giving ester $(S,R)-(+)$ -12a (14 mg, 70%).

Acknowledgements

The authors are indebted to Ms. Ikuko Maeda for obtaining the NMR spectra.

References

- 1. Mori, K. Biosci. Biotechnol. Biochem. 1996, 60, 1925– 1932.
- 2. Mori, K. J. Synth. Org. Chem. Jpn. 2004, 62, 2–13 (in Japanese).
- 3. Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512–519.
- 4. Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. J. Org. Chem. 1986, 51, 2370–2374.
- 5. Ohtani, I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113, 4092–4096.
- 6. Kusumi, T.; Fukushima, T.; Ohtani, I.; Kakisawa, H. Tetrahedron Lett. 1991, 32, 2939–2942.
- 7. Kusumi, T.; Takahashi, H.; Xu, P.; Fukushima, T.; Asakawa, Y.; Hashimoto, T.; Kan, Y.; Inouye, Y. Tetrahedron Lett. 1994, 35, 4397–4400.
- 8. Latypov, S. K.; Seco, J. M.; Quiñoá, E.; Riguera, R. J. Org. Chem. 1995, 60, 504–515.
- 9. Seco, J. M.; Quiñoá, E.; Riguera, R. Chem. Rev. 2004, 104, 17–117.
- 10. Hashimoto, Y. Chem. Today (in Japanese) 1994, 283, 38– 44.
- 11. Nishimura, K.; Hashimoto, Y.; Iwasaki, S. Chem. Pharm. Bull. 1994, 42, 1157–1159.
- 12. Goto, J.; Hasegawa, M.; Nakamura, S.; Shimada, K.; Nambara, T. Chem. Pharm. Bull. 1977, 25, 847–849.
- 13. Goto, J.; Hasegawa, M.; Nakamura, S.; Shimada, K.; Nambara, T. J. Chromatogr. 1978, 152, 413–419.
- 14. Ichikawa, A. Chirality 1999, 11, 70–74.
- 15. Ichikawa, A.; Hiradate, S.; Sugio, A.; Kuwahara, S.; Watanabe, M.; Harada, N. Tetrahedron: Asymmetry 1999, 10, 4075–4078.
- 16. Harada, N.; Watanabe, M.; Kuwahara, S.; Sugio, A.; Kasai, Y.; Ichikawa, A. Tetrahedron: Asymmetry 2000, 11, 1249–1253.
- 17. Taji, H.; Kasai, Y.; Sugio, A.; Kuwahara, S.; Watanabe, M.; Harada, N.; Ichikawa, A. Chirality 2002, 14, 81– 84.
- 18. Fujita, T.; Kuwahara, S.; Watanabe, M.; Harada, N. Enantiomer 2002, 7, 219–223.
- 19. Kasai, Y.; Taji, H.; Fujita, T.; Yamamoto, Y.; Akagi, M.; Sugio, A.; Kuwahara, S.; Watanabe, M.; Harada, N.; Ichikawa, A.; Schurig, V. Chirality 2004, 16, 569–585.
- 20. Kasai, Y.; Naito, J.; Kuwahara, S.; Watanabe, M.; Ichikawa, A.; Harada, N. J. Synth. Org. Chem. Jpn. 2004, 62, 1114–1127.
- 21. Ichikawa, A.; Ono, H.; Harada, N. Tetrahedron: Asymmetry 2003, 14, 1593–1597.
- 22. Ichikawa, A.; Ono, H.; Harada, N. Chirality 2004, 16, 559–567.
- 23. Hashimoto, N.; Aoyama, T.; Shioiri, T. Chem. Pharm. Bull. 1981, 29, 1475–1478.
- 24. Fujiwhara, M.; Mori, K. Agric. Biol. Chem. 1986, 50, 2925–2927.
- 25. Borden, J. H.; Chong, L.; McLean, J. A.; Slessor, K. N.; Mori, K. Science 1976, 192, 894–896.
- 26. Mori, K. Tetrahedron 1975, 31, 3011–3012.
- 27. Hall, D. R.; Beevor, P. S.; Cork, A.; Nesbitt, B. F.; Vale, G. A. Insect Sci. Appl. 1984, 5, 335–339.
- 28. Mosandl, A.; Heusinger, G.; Gessner, M. J. Agric. Food Chem. 1986, 34, 119–122.
- 29. Pierce, A. M.; Pierce, H. D., Jr.; Oehlschlager, A. C.; Borden, J. H. J. Chem. Ecol. 1991, 17, 567–580.
- 30. Cork, A.; Park, K. C. Med. Vet. Entomol. 1996, 10, 269–276.